
PyTables

Processing And Analyzing
Very Large Amounts Of Data

In Python

Francesc Alted
falted@openlc.org

EuroPython 2003, 25 June, 2003, Charleroi, Belgium



 Outline
  

  What is PyTables and why it exists?
 
 

  Interactive demonstration 
 

  Some benchmarks 
 

  Final remarks 



 Motivation
 

  Many applications need to save and read very large amounts 
of data ==> processing it is a real challenge!

 

  Computers are powerful enough to deal with very large data 
sets. But, the question is: can people handle such data sets?

 

  Requirements:
      Analysis is an iterative process: interactivity
      Re-reading many times the data: efficency
      Good framework to endow the data a structure 

  PyTables is a Python package designed with these 
requirements in mind!

 



 What does PyTables offer?
 

  Interactivity
      The user can take immediate action based on previous 

feedback

      This greatly accelerates the process of data mining
 

  Efficiency
      Improves your productivity
      Very important when interactivity is an issue
 

  Hierarchical structure
      It allows you to break your data into smaller, related chunks
      It offers you an intuitive way to categorize data
      Datasets become objects that can be easily manipulated
 
 



 Machinery behind PyTables
 

 PyTables relies on powerful software to achieve its goals: 

  Python -- everyone here knows that (2.2 version needed 
because generators are heavily used)

 

  HDF5 -- general purpose library and file format for storing 
scientific data

 

  numarray -- next generation of the well-known Numerical 
Python package

 

  Pyrex -- tool to make Python extensions with a Python-like 
syntax

 



 What is HDF5?
 

 It is a general purpose library and file format for storing 
scientific data in a hierarchical manner. It is developed and 
maintained at NCSA.
 

  Can store two primary objects: datasets and groups
      Dataset: multidimensional array of data elements
      Group: Structure for organizing objects in the HDF5 file
 

  Very flexible and well tested in scientific environments
 

  Being already used in: Meteorology, Oceanography, 
Astronomy, Astrophysics, Numerical simulation and many 
other applications

 



 PyTables highlights
 

  General Python library to deal with large amounts of data 

  Support of Numerical Python and numarray objects
 

  Appendable tables
 

  Can read generic HDF5 files
 

  Transparent data compression support
 

  Support of files bigger than 2 GB (unlimited data size in 
practice)

 

  Architecture-independent (is aware of big/little endian issues)
 



 A first example
 

 

group

Root

array2

1 2 3 4

array1

0.1 0.3 3.41.2

idnumber identity speed

0
1
2
3
4
5
6
7
8
9

’Particle id: 0’
’Particle id: 1’
’Particle id: 2’
’Particle id: 3’
’Particle id: 4’
’Particle id: 5’
’Particle id: 6’
’Particle id: 7’
’Particle id: 8’
’Particle id: 9’

 0.1
 2.2
 4.3
 6.2
 8.1
10.5
12.6
14.2
16.4
18.9

table

 



 The PyTables code
  

 from tables import * 

 class Particle(IsDescription):
     identity = Col("CharType", 16, " ", pos = 0)  # character String
     speed = Col("Float32", 1, pos = 2)  # single-precision
     idnumber = Col("Int16", 1, pos = 1)  # short integer 

 fileh = openFile("example.h5", mode = "w")
 fileh.createArray(fileh.root, "array1", [.1,.2,.3,.4], "Floats")
 group = fileh.createGroup(fileh.root, "group")
 fileh.createArray(group, "array2", [1,2,3,4], "Int array")
 table = fileh.createTable(group, "table", Particle, "3 fields")
 row = table.row
 for i in xrange(10):
     row[’identity’]  = ’Particle id: %3d’ % (i)
     row[’idnumber’] = i
     row[’speed’]  = i * 2.
     row.append() 

 fileh.close() 



 First example output
  

 $ h5ls -rd example.h5
 /array1                  Dataset {4}
     Data:
         (0) 0.1, 0.2, 0.3, 0.4
 /group                   Group
 /group/array2            Dataset {4}
     Data:
         (0) 1, 2, 3, 4
 /group/table             Dataset {10/Inf}
     Data:
         (0) {0, "Particle id:   0", 0}, {1, "Particle id:   1", 2},
         (2) {2, "Particle id:   2", 4}, {3, "Particle id:   3", 6},
         (4) {4, "Particle id:   4", 8}, {5, "Particle id:   5", 10},
         (6) {6, "Particle id:   6", 12}, {7, "Particle id:  7", 14},
         (8) {8, "Particle id:   8", 16}, {9, "Particle id:  9", 18} 



 The object tree
 

 

fileObject(File)
+name: string = "example.h5"
+root: Group = groupRootObject
+open(filename:string)
+newGroup(where:Group,name:string): Group
+newTable(where:Group,name:string,description:IsDescription): Table
+newArray(where:Group,name:string,object:array): Array
+close()

groupRootObject(Group)
+_v_name: string = root
+group: Group = groupObject
+array1: Array = arrayObject1

arrayObject1(Array)
+name: string = array1
+read(): Array

tableObject(Table)
+name: string = table1
+row: Row = rowObject
+read(): Table

rowObject(Row)
+identity: CharType
+idnumber: Int16
+speed: Float32
+append()
+nrow()

groupObject(Group)
+_v_name: string = group2
+table: Table = tableObject
+array2: Array = arrayObject2

arrayObject2(Array)
+name: string = array2
+read(): Array

 



 How fast is fast?
  

  Several benchmarks have been conducted in order to 
analyze if PyTables is competitive with existing tools to save 
data persistently.

 

  Comparisons has been made with cPickle, struct, and 
SQLite (a relational database).

 

  The benchmarks tested writing and selecting table data that 
fulfill a series of conditions.

 

  The effect of transparent data compression has also been 
analyzed.

 



 The row descriptions
 

 Two different row sizes of different lengths has been choosed: 

  Small Size (16 Bytes)
 class Small(IsDescription):
     var1 = Col("CharType", 4, "")
     var2 = Col("Int32", 1, 0)
     var3 = Col("Float64", 1, 0)
 

  Medium Size (56 Bytes)
 class Medium(IsDescription):
     name        = Col("CharType", 16, "")
     float1      = Col("Float64", 2, NA.arange(2))
     ADCcount    = Col("Int32", 1, 0)
     grid_i      = Col("Int32", 1, 0)
     grid_j      = Col("Int32", 1, 0)
     pressure    = Col("Float32", 1, 0)
     energy      = Col("Float64", 1, 0)
 
 



 The selection mechanism
 

  PyTables:
      e = [ row[’var1’] for row in table.iterrows()
                     if row[’var2’] < 20 ]
  cPickle:
      while rec:
                   record = cPickle.loads(rec[1])
                   if record[’var2’] < 20:
                     e.append(record[’var1’])
  struct:
      while rec:
                   record = struct.unpack(isrec._v_fmt, rec[1])
                   if record[1] < 20:
                     e.append(record[0])
  SQLite:
      cursor.execute("select var1 from table where var2 < 20")
 

 Note: cPickle and struct tests use a RECNO bsddb3 database in order to emulate 
records efficently.

 



 Benchmark platform description
 

  System 1
      Laptop with Intel P4 @ 2 GHz
      256 MB RAM
      Disk IDE @ 4200 RPM
  System 2
      Workstation with AMD XP @ 1.8 GHz
      1024 MB RAM
      Disk IDE @ 7200 RPM 

  PyTables pre-0.6
  HDF5 1.4.5-post2
  numarray pre-0.6
  SQLite 2.8.3
  PySQLite 0.4.3
 



 Comparing cPikle and struct with PyTables
  

 
 



 Conclusions from first benchmark (cPickle & 
struct)

  

  Writing
      Between 20 and 30 times faster than cPickle + bsddb3
      Between 3 and 10 times faster than struct + bsddb3 

  Reading
      Around 100 times faster than cPickle + bsddb3
      Around 10 times faster than struct + bsddb3 
 

 PyTables is far superior to cPickle and struct for any amount of data
 



 Comparing SQLite with PyTables (writing)
 

  0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1000  10000  100000  1e+06  1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

PyTables & Psyco
PyTables & No Psyco

sqlite

 



 Comparing SQLite with PyTables (selecting)
 

  0

 200

 400

 600

 800

 1000

 1200

 1400

 1000  10000  100000  1e+06  1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

PyTables & Psyco
PyTables & No Psyco

sqlite

 



 PyTables vs SQLite (conclusions)
 

 Writing
  PyTables is around 35 times faster than SQLite
  Note: SQLite runs in asynchronous mode (i.e. the fastest)
 

 Reading
  In-core selects (i.e. file size fits in cache memory)
      PyTables achieves between 60% and 90% of SQLite speed
  Out-of-core selects (i.e. file size do not fit in cache memory)
      PyTables outperforms SQLite between a 30% and a 100%
 

 PyTables beats SQLite when dealing with large amounts of data!
 (while being close to it for smaller sizes)

 



 Wave of the future: Compression
  

  Compression alleviates disk limitations in exchange of 
consuming more CPU

 

  CPU speed grows much faster than disk speed and 
capacities:

      CPU speed grows a 60% / year
      Disk capacity grows a 30% / year
      Disk bandwith only grows a 20% / year
 

  Compression will increasingly help to speed-up the I/O 
process as well as to expand the capacity capabilities of 
disks

 



 Compression benchmarks (writing)
 

  0

 2

 4

 6

 8

 10

 12

 14

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

S
pe

ed
 (

M
B

/s
)

Number of rows

Writing with medium record size (56 bytes)

No compression
ZLIB
LZO
UCL

 



 Compression benchmarks (reading)
 

  0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

S
pe

ed
 (

M
B

/s
)

Number of rows

Selecting with medium record size (56 bytes)

No compression
ZLIB
LZO
UCL

 



 Comparison with SQLite revisited (I)
 

  0

 200

 400

 600

 800

 1000

 1200

 1400

 1000  10000  100000  1e+06  1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

Psyco & compression (LZO)
No Psyco & compression (LZO)

No Psyco & no compression
sqlite

 



 Comparison with SQLite revisited  (II)
 

  0

 10

 20

 30

 40

 50

 60

 10000  100000  1e+06  1e+07

T
im

e 
(s

ec
on

ds
)

Number of rows

Selecting with medium record size (56 bytes)

Psyco & compression (LZO)
No Psyco & compression (LZO)

No Psyco & no compression
sqlite

 



 Compression benchmarks (conclusions)
 

  Compression improves the reading speed by a factor 
between 1.5 and 2 (that depends on the compressor 
choosed and the dataset size).

 

  When writing, only a small fraction of the original speed is 
lost (except with the LZO compressor, which is as efficient 
as the no-compression case).

 

  When compression is used together with Psyco, PyTables 
can be up to 8 times faster than SQLite for the out-of-core 
case.

 

  Compression also expands the data size range where the 
filesystem can make use of the system memory to cache the 
file.

 



 Current PyTables limitations and plans for future
 

  One can not delete a single row on a table. You need to 
rewrite the whole table except the row you want to remove. 
This will hopefully be solved when the next release of HDF5 
(1.6) appears.

 

  Elements in columns can not have more than one 
dimension. This should be solved when numarray 0.6 
appears (it will have support for multidimensional recarrays 
cells).

 

  Object or row elements can not be related to other elements
 

  More filters have to be added to import data from other data 
sources, such as NetCDF, ASCII, CSV, etc. files.

 



 PyTables uses
 

 Situations were data has to be acquired once and read multiple 

  Scientific Applications
      Meteorology
      Astronomy
      Experimental Physics
      Medicine (Physiological sensors)
      ... 

  Data acquisition from IT applications
      Tracing data from routers
      System monitoring
      Security (Firewalls, IDS, ...)
      ... 



 Final remarks
  

  PyTables allows you to process your data interactively and 
quickly.

 

  If you have large amounts of data, an interpreted language 
like Python is more than enough to get maximum 
performance: PyTables is only limited by disk I/O speed.

 

  PyTables has been designed to excel in retrieving and 
selecting data very fast, but is also stunningly fast when 
writing (I didn’t expect this result - a welcome surprise).

 



 PyTables is for real work!
  

  More than 200 tests units are now incorporated. More will be 
added and quality will only improve as PyTables evolves.

 

  PyTables is already in beta and its API is mostly stable.
 

  It comes with complete documentation both in doc strings 
format as well as in a high quality 50 pages user’s manual in 
PDF and HTML formats.

 

  Download the last version (0.5.1, released on May 13th, and 
0.6 is close to publication) and use it for free from:

 

 http://pytables.sourceforge.net


