
The Starving CPU Problem
High Performance Libraries

Large Data Analysis with Python

Francesc Alted

Freelance Developer and PyTables Creator

G-Node
November 24th, 2010. Munich, Germany

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Where do I live?

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Where do I live?

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Some Words About PyTables

Started as a solo project back in 2002. I had a necessity to
deal with very large amounts of data and needed to scratch
my itch.

Focused on handling large series of tabular data:

Buffered I/O for maximum throughput.
Very fast selections through the use of Numexpr.
Column indexing for top-class performance queries.

Incomes from selling PyTables Pro sponsors part of my
invested time.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Some PyTables Users

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Getting the Most Out of Computers: An Easy Goal?

Computers nowadays are very powerful:

Extremely fast CPU’s (multicores)
Large amounts of RAM
Huge disk capacities

But they are facing a pervasive problem:
An ever-increasing mismatch between CPU, memory and disk
speeds (the so-called “Starving CPU problem”)

This introduces tremendous difficulties in getting the most out of
computers.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Once Upon A Time...

In the 1970s and 1980s the memory subsystem was able to
deliver all the data that processors required in time.

In the good old days, the processor was the key bottleneck.

But in the 1990s things started to change...

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Once Upon A Time...

In the 1970s and 1980s the memory subsystem was able to
deliver all the data that processors required in time.

In the good old days, the processor was the key bottleneck.

But in the 1990s things started to change...

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

CPU vs Memory Cycle Trend

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

The CPU Starvation Problem

Known facts (in 2010):

Memory latency is much higher (around 250x) than processors
and it has been an essential bottleneck for the past twenty
years.

Memory throughput is improving at a better rate than memory
latency, but it is also much slower than processors (about 25x).

The result is that CPUs in our current computers are suffering from
a serious data starvation problem: they could consume (much!)
more data than the system can possibly deliver.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

What Is the Industry Doing to Alleviate CPU Starvation?

They are improving memory throughput: cheap to implement
(more data is transmitted on each clock cycle).

They are adding big caches in the CPU dies.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Why Is a Cache Useful?

Caches are closer to the processor (normally in the same die),
so both the latency and throughput are improved.

However: the faster they run the smaller they must be.

They are effective mainly in a couple of scenarios:

Time locality: when the dataset is reused.
Spatial locality: when the dataset is accessed sequentially.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Time Locality

Parts of the dataset are reused

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Spatial Locality

Dataset is accessed sequentially

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

The Blocking Technique

When you have to access memory, get a contiguous block that fits
in the CPU cache, operate upon it or reuse it as much as possible,
then write the block back to memory:

�����

�������	

���

������

�������	�

�������	�

����������	
��

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Understand NumPy Memory Layout

Being “a” a squared array (4000x4000) of doubles, we have:

Summing up column-wise

a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 µs

Remember:

NumPy arrays are ordered row-wise (C convention)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Understand NumPy Memory Layout

Being “a” a squared array (4000x4000) of doubles, we have:

Summing up column-wise

a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 µs

Remember:

NumPy arrays are ordered row-wise (C convention)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

def dot_naive(a,b): # 1.5 MFlops

c = np.zeros((nrows, ncols), dtype=’f8’)

for row in xrange(nrows):

for col in xrange(ncols):

for i in xrange(nrows):

c[row,col] += a[row,i] * b[i,col]

return c

Vectorized matrix-matrix multiplication: 20 s (64x faster)

def dot(a,b): # 100 MFlops

c = np.empty((nrows, ncols), dtype=’f8’)

for row in xrange(nrows):

for col in xrange(ncols):

c[row, col] = np.sum(a[row] * b[:,col])

return c

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

The Consequences of the Starving CPU Problem

The gap between CPU and memory speed is simply huge (and
growing)

Over time, an increasing number of applications will be
affected by memory access

Fortunately, hardware manufacturers are creating novel solutions for
fighting CPU starvation!

But vendors cannot solve the problem alone...

Computational scientists need another way to look at their
computers:
Data arrangement, not code itself, is central to program design.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

The Consequences of the Starving CPU Problem

The gap between CPU and memory speed is simply huge (and
growing)

Over time, an increasing number of applications will be
affected by memory access

Fortunately, hardware manufacturers are creating novel solutions for
fighting CPU starvation!

But vendors cannot solve the problem alone...

Computational scientists need another way to look at their
computers:
Data arrangement, not code itself, is central to program design.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Why High Performance Libraries?

High performance libraries are made by people that knows very
well the different optimization techniques.

You may be tempted to create original algorithms that can be
faster than these, but in general, it is very difficult to beat
them.

In some cases, it may take some time to get used to them, but
the effort pays off in the long run.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

NumPy: A Powerful Data Container for Python

NumPy provides a very powerful, object oriented, multi-dimensional
data container:

array[index]: retrieves a portion of a data container

(array1**3 / array2) - sin(array3): evaluates
potentially complex expressions

numpy.dot(array1, array2): access to optimized BLAS
(*GEMM) functions

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

NumPy: The Cornerstone of Python Numerical Apps

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Some In-Core High Performance Libraries

ATLAS/MKL (Intel’s Math Kernel Library): Uses memory efficient
algorithms as well as SIMD and multi-core algorithms
→ linear algebra operations.

VML (Intel’s Vector Math Library): Uses SIMD and
multi-core to compute basic math functions (sin, cos,
exp, log...) in vectors.

Numexpr: Performs potentially complex operations with NumPy
arrays without the overhead of temporaries. Can
make use of multi-cores.

Blosc: A multi-threaded compressor that can transmit data
from caches to memory, and back, at speeds that can
be larger than a OS memcpy().

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

ATLAS/Intel’s MKL: Optimize Memory Access

Using integrated BLAS in NumPy: 5.6 s

numpy.dot(a,b) # 350 MFlops

Using ATLAS: 0.19s (35x faster than integrated BLAS)

numpy.dot(a,b) # 10 GFlops

Using Intel’s MKL: 0.11 s (70% faster than ATLAS)

numpy.dot(a,b) # 17 GFlops (2x12=24 GFlops peak)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Numexpr: Dealing with Complex Expressions

Wears a specialized virtual machine for evaluating expressions.

It accelerates computations by using blocking and by avoiding
temporaries.

Multi-threaded: can use several cores automatically.

It has support for Intel’s VML (Vector Math Library), so you
can accelerate the evaluation of transcendental (sin, cos,
atanh, sqrt. . .) functions too.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Numexpr Example

Be “a” and “b” are vectors with 1 million entries each:

Using plain NumPy

a**2 + b**2 + 2*a*b # takes 33.3 ms

Using Numexpr: more than 4x faster!

numexpr.evaluate(’a**2 + b**2 + 2*a*b’)# takes 8.0 ms

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

NumPy And Temporaries

� � � �����

���

���

�����

���	
������������������
���������	�����������������������

���	
�

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Numexpr Avoids (Big) Temporaries

� � � �����

���

�����

���	
������������������
���	�������	�����������������������������

���	
�

���

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Numexpr Performance (Using Multiple Threads)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Blosc: A Blocked, Shuffling and Loss-Less Compression

Library

Blosc (http://blosc.pytables.org/) is a new, loss-less
compressor for binary data. It’s optimized for speed, not for
high compression ratios.

It is based on the FastLZ compressor, but with some additional
tweaking:

It works by splitting the input dataset into blocks that fit well
into the level 1 cache of modern processors.
Makes use of SSE2 vector instructions (if available).
Multi-threaded (via pthreads).

Has a Python wrapper
(http://github.com/FrancescAlted/python-blosc)

Free software (MIT license).

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Reading Compressed Datasets

Transmission + decompression processes faster than direct transfer?

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Writing Compressed Datasets

Compression + transmission processes faster than direct transfer?

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Blosc: Beyond memcpy() Performance (I)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Blosc: Beyond memcpy() Performance (II)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Outline

1 The Starving CPU Problem
Getting the Most Out of Computers
Caches and Data Locality
Techniques For Fighting Data Starvation

2 High Performance Libraries
Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

When Do You Need Out-Of-Core?

Situations where your datasets do not fit in memory are
increasingly common:

Datasets are continuously growing (e.g. better and more
comprehensive sensors)
Finer precision in results normally requires larger storage size

Persistence is needed

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Disk VS Memory

���������	

���������������
�
�
�
�
�
��

 �

�
�
�

���

�������������

�������������

���������������

�������������

Disk access is more complicated than memory access

OOC libraries should provide an easier interface

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Easing Disk Access Using the NumPy OO Paradigm

array[index]

(array1**3 / array2) - sin(array3)

numpy.dot(array1, array2)

Many existing OOC libraries are already mimicking parts of this
abstraction.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Some OOC Libraries Mimicking NumPy Model

Interfaces to binary formats (HDF5, NetCDF4):

Interfaces to HDF5:

h5py
PyTables

Interfaces to NetCDF4:

netcdf4-python
Scientific.IO.NetCDF

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Using NumPy As Default Container for OOC

All the previous libraries are using NumPy as default container (and
they can also use compression filters for improved I/O).

Interfaces for RDBMS in Python lacks support for direct NumPy
containers (very inefficient!).

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

PyTables: Retrieving a Portion of a Dataset

array[index], where index can be one of the following:

scalar: array[1]

slice: array[3:1000, ..., :10]

list (or array) of indices (fancy indexing): array[[3,10,30,1000]]

array of booleans: array[array2 > 0]

All these selection modes are supported by PyTables.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

PyTables: Operating With Disk-Based Arrays

tables.Expr is an optimized evaluator for expressions of
disk-based arrays.

It is a combination of the Numexpr advanced computing
capabilities with the high I/O performance of PyTables.

Similarly to Numexpr, disk-temporaries are avoided, and
multi-threaded operation is preserved.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

tables.Expr in Action

Evaluating .25*x**3 + .75*x**2 - 1.5*x - 2

import tables as tb

f = tb.openFile(h5fname, "a")

x = f.root.x # get the x input

r = f.createCArray(f.root, "r", atom=x.atom, shape=x.shape)

ex = tb.Expr(’.25*x**3 + .75*x**2 - 1.5*x - 2’)

ex.setOutput(r) # output will got to the CArray on disk

ex.eval() # evaluate!

f.close()

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

tables.Expr Performance (In-Core Operation)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Other Features of PyTables

Allows organizing datasets on a hierarchical structure

Each dataset or group can be complemented with user
metadata

Powerful query engine allowing ultra-fast queries (based on
Numexpr and OPSI)

Advanced compression capabilities (Blosc)

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

PyTables Pro Query Performance

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Summary

These days, you should understand that there is a CPU
starvation problem if you want to get decent performance.

Make sure that you use NumPy as the basic building block for
your computations.

Leverage existing memory-efficient libraries for performing your
computations optimally.

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

More Info

Francesc Alted
Why Modern CPUs Are Starving and What Can Be Done
about It
Computing in Science and Engineering, IEEE, March 2010
http://www.pytables.org/docs/CISE-March2010.pdf

◮ NumPy crew
NumPy manual
http://docs.scipy.org/doc/numpy

◮ PyTables site
http://www.pytables.org

Francesc Alted Large Data Analysis with Python

http://www.pytables.org/docs/CISE-March2010.pdf
http://docs.scipy.org/doc/numpy
http://www.pytables.org

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Questions?

Contact:

faltet@pytables.org

Francesc Alted Large Data Analysis with Python

The Starving CPU Problem
High Performance Libraries

Why Should You Use Them?
In-Core High Performance Libraries
Out-of-Core High Performance Libraries

Acknowledgments

Thanks to Stéfan van der Walt for giving permission to use his cool
multidimensional container picture:

This was made using a Ruby plugin for Google SketchUp.

Francesc Alted Large Data Analysis with Python

	The Starving CPU Problem
	Getting the Most Out of Computers
	Caches and Data Locality
	Techniques For Fighting Data Starvation

	High Performance Libraries
	Why Should You Use Them?
	In-Core High Performance Libraries
	Out-of-Core High Performance Libraries

