Large Data Analysis with Python

Francesc Alted

Freelance Developer and PyTables Creator

G-Node November 24th, 2010. Munich, Germany

• • • • • • • • • • • • • •

Where do I live?

Francesc Alted Large Data Analysis with Python

<ロ> (四) (四) (日) (日) (日)

Where do I live?

Francesc Alted Large Data Analysis with Python

<ロ> (四) (四) (三) (三) (三)

э

Some Words About PyTables

- Started as a solo project back in 2002. I had a necessity to deal with very large amounts of data and needed to scratch my itch.
- Focused on handling large series of tabular data:
 - Buffered I/O for maximum throughput.
 - Very fast selections through the use of Numexpr.
 - Column indexing for top-class performance queries.
- Incomes from selling PyTables Pro sponsors part of my invested time.

A D b A A B b A B

Some PyTables Users

イロト イポト イヨト イヨト

э

Outline

The Starving CPU Problem

- Getting the Most Out of Computers
- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

Outline

The Starving CPU Problem

Getting the Most Out of Computers

- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

< 17 × 3 = 1

Getting the Most Out of Computers: An Easy Goal?

- Computers nowadays are very powerful:
 - Extremely fast CPU's (multicores)
 - Large amounts of RAM
 - Huge disk capacities
- But they are facing a pervasive problem: An ever-increasing mismatch between CPU, memory and disk speeds (the so-called **"Starving CPU problem**")

This introduces tremendous difficulties in getting the most out of computers.

Getting the Most Out of Computers Caches and Data Locality Techniques For Fighting Data Starvation

Once Upon A Time...

- In the 1970s and 1980s the memory subsystem was able to deliver all the data that processors required in time.
- In the good old days, the processor was the key bottleneck.
- But in the 1990s things started to change...

• • • • • • • • • • • • • •

Getting the Most Out of Computers Caches and Data Locality Techniques For Fighting Data Starvation

Once Upon A Time...

- In the 1970s and 1980s the memory subsystem was able to deliver all the data that processors required in time.
- In the good old days, the processor was the key bottleneck.
- But in the 1990s things started to change...

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Getting the Most Out of Computers Caches and Data Locality Techniques For Fighting Data Starvation

CPU vs Memory Cycle Trend

Francesc Alted Large Data Analysis with Python

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Getting the Most Out of Computers Caches and Data Locality Techniques For Fighting Data Starvation

The CPU Starvation Problem

Known facts (in 2010):

- Memory latency is much higher (around 250x) than processors and it has been an essential bottleneck for the past twenty years.
- Memory throughput is improving at a better rate than memory latency, but it is also much slower than processors (about 25x).

The result is that CPUs in our current computers are suffering from a serious data starvation problem: *they could consume (much!)* more data than the system can possibly deliver.

Outline

The Starving CPU Problem

- Getting the Most Out of Computers
- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What Is the Industry Doing to Alleviate CPU Starvation?

- They are improving memory throughput: cheap to implement (more data is transmitted on each clock cycle).
- They are adding big caches in the CPU dies.

Why Is a Cache Useful?

- Caches are closer to the processor (normally in the same die), so both the latency and throughput are improved.
- However: the faster they run the smaller they must be.
- They are effective mainly in a couple of scenarios:
 - Time locality: when the dataset is reused.
 - Spatial locality: when the dataset is accessed sequentially.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Time Locality

Parts of the dataset are reused

Memory (C array)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Spatial Locality

Dataset is accessed sequentially

Memory (C array)

イロト イポト イヨト イヨト

Getting the Most Out of Computers Caches and Data Locality Techniques For Fighting Data Starvation

Outline

The Starving CPU Problem

- Getting the Most Out of Computers
- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

The Blocking Technique

When you have to access memory, get a contiguous block that fits in the CPU cache, operate upon it or reuse it as much as possible, then write the block back to memory:

Understand NumPy Memory Layout

Being "a" a squared array (4000x4000) of doubles, we have:

Summing up column-w	vise	
a[:,1].sum()	# takes 9.3 ms	

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 µs

Remember: NumPy arrays are ordered row-wise (C convention

(日) (同) (三) (三)

Understand NumPy Memory Layout

Being "a" a squared array (4000x4000) of doubles, we have:

Summing up column-wis	9	
a[:,1].sum()	# takes 9.3 ms	

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 µs

Remember:

NumPy arrays are ordered row-wise (C convention)

(日) (同) (三) (三)

Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

def dot_naive(a,b): # 1.5 MFlops c = np.zeros((nrows, ncols), dtype='f8') for row in xrange(nrows): for col in xrange(ncols): for i in xrange(nrows): c[row,col] += a[row,i] * b[i,col] return c

Vectorized matrix-matrix multiplication: 20 s (64x faster)

```
def dot(a,b): # 100 MFlops
    c = np.empty((nrows, ncols), dtype='f8')
    for row in xrange(nrows):
        for col in xrange(ncols):
            c[row, col] = np.sum(a[row] * b[:,col])
    return c
```

The Consequences of the Starving CPU Problem

- The gap between CPU and memory speed is simply huge (and growing)
- Over time, an increasing number of applications will be affected by memory access

Fortunately, hardware manufacturers are creating novel solutions for fighting CPU starvation!

But vendors cannot solve the problem alone...

Computational scientists need another way to look at their computers:

Data arrangement, not code itself, is central to program design.

(日) (同) (三) (三)

The Consequences of the Starving CPU Problem

- The gap between CPU and memory speed is simply huge (and growing)
- Over time, an increasing number of applications will be affected by memory access

Fortunately, hardware manufacturers are creating novel solutions for fighting CPU starvation!

But vendors cannot solve the problem alone...

Computational scientists need another way to look at their computers:

Data arrangement, not code itself, is central to program design.

(日) (同) (三) (三)

Outline

The Starving CPU Problem

- Getting the Most Out of Computers
- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

A (1) > (1)

Why High Performance Libraries?

- High performance libraries are made by people that knows very well the different optimization techniques.
- You may be tempted to create original algorithms that can be faster than these, but in general, it is very difficult to beat them.
- In some cases, it may take some time to get used to them, but the effort pays off in the long run.

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

NumPy: A Powerful Data Container for Python

NumPy provides a very powerful, object oriented, multi-dimensional data container:

- array[index]: retrieves a portion of a data container
- (array1**3 / array2) sin(array3): evaluates potentially complex expressions
- numpy.dot(array1, array2): access to optimized BLAS (*GEMM) functions

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

NumPy: The Cornerstone of Python Numerical Apps

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Librarie:

Outline

The Starving CPU Problem

- Getting the Most Out of Computers
- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

< 17 × 3 = 1

Some In-Core High Performance Libraries

ATLAS/MKL (Intel's Math Kernel Library): Uses memory efficient algorithms as well as SIMD and multi-core algorithms \rightarrow linear algebra operations.

- VML (Intel's Vector Math Library): Uses SIMD and multi-core to compute basic math functions (sin, cos, exp, log...) in vectors.
- Numexpr: Performs potentially complex operations with NumPy arrays without the overhead of temporaries. Can make use of multi-cores.
 - Blosc: A multi-threaded compressor that can transmit data from caches to memory, and back, at speeds that can be larger than a OS memcpy().

イロト イポト イヨト イヨト

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

ATLAS/Intel's MKL: Optimize Memory Access

Using integrated BLAS in NumPy: 5.6 s

numpy.dot(a,b) # 350 MFlops

Using ATLAS: 0.19s (35x faster than integrated BLAS)

numpy.dot(a,b) # 10 GFlops

Using Intel's MKL: 0.11 s (70% faster than ATLAS)

numpy.dot(a,b) # 17 GFlops (2x12=24 GFlops peak)

Numexpr: Dealing with Complex Expressions

- Wears a specialized virtual machine for evaluating expressions.
- It accelerates computations by using blocking and by avoiding temporaries.
- Multi-threaded: can use several cores automatically.
- It has support for Intel's VML (Vector Math Library), so you can accelerate the evaluation of transcendental (sin, cos, atanh, sqrt...) functions too.

(日) (同) (三) (

Numexpr Example

Be "a" and "b" are vectors with 1 million entries each:

Using plain NumPy

 $a^{**2} + b^{**2} + 2^*a^*b$ # takes 33.3 ms

Using Numexpr: more than 4x faster!

numexpr.evaluate('a**2 + b**2 + 2*a*b') # takes 8.0 ms

イロト イポト イヨト イヨト

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

NumPy And Temporaries

Computing "a*b+c" with NumPy. Temporaries goes to memory.

イロト イポト イヨト イヨト

э

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Numexpr Avoids (Big) Temporaries

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

イロト イポト イヨト イヨト

э

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Numexpr Performance (Using Multiple Threads)

Blosc: A Blocked, Shuffling and Loss-Less Compression Library

- Blosc (http://blosc.pytables.org/) is a new, loss-less compressor for binary data. It's optimized for speed, not for high compression ratios.
- It is based on the FastLZ compressor, but with some additional tweaking:
 - It works by splitting the input dataset into blocks that fit well into the level 1 cache of modern processors.
 - Makes use of SSE2 vector instructions (if available).
 - Multi-threaded (via pthreads).
- Has a Python wrapper (http://github.com/FrancescAlted/python-blosc)
- Free software (MIT license).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Reading Compressed Datasets

Transmission + decompression processes faster than direct transfer?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Writing Compressed Datasets

Compression + transmission processes faster than direct transfer?

イロン イロン イヨン イヨン

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Blosc: Beyond memcpy() Performance (I)

Francesc Alted Large Data Analysis with Python

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Blosc: Beyond memcpy() Performance (II)

Francesc Alted Large Data Analysis with Python

Outline

The Starving CPU Problem

- Getting the Most Out of Computers
- Caches and Data Locality
- Techniques For Fighting Data Starvation

2 High Performance Libraries

- Why Should You Use Them?
- In-Core High Performance Libraries
- Out-of-Core High Performance Libraries

A (1) > (1)

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

When Do You Need Out-Of-Core?

- Situations where your datasets do not fit in memory are increasingly common:
 - Datasets are continuously growing (e.g. better and more comprehensive sensors)
 - Finer precision in results normally requires larger storage size
- Persistence is needed

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Disk VS Memory

- Disk access is more complicated than memory access
- OOC libraries should provide an easier interface

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Easing Disk Access Using the NumPy OO Paradigm

- array[index]
- (array1**3 / array2) sin(array3)
- numpy.dot(array1, array2)

Many existing OOC libraries are already mimicking **parts** of this abstraction.

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Some OOC Libraries Mimicking NumPy Model

Interfaces to binary formats (HDF5, NetCDF4):

- Interfaces to HDF5:
 - h5py
 - PyTables
- Interfaces to NetCDF4:
 - netcdf4-python
 - Scientific.IO.NetCDF

(日) (同) (三) (三)

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Using NumPy As Default Container for OOC

All the previous libraries are using NumPy as default container (and they can also use compression filters for improved I/O).

Interfaces for RDBMS in Python lacks support for direct NumPy containers (very inefficient!).

PyTables: Retrieving a Portion of a Dataset

array[index], where index can be one of the following:

- scalar: array[1]
- slice: array[3:1000, ..., :10]
- list (or array) of indices (fancy indexing): array[[3,10,30,1000]]
- array of booleans: array[array2 > 0]

All these selection modes are supported by PyTables.

(日) (同) (三) (三)

PyTables: Operating With Disk-Based Arrays

- tables.Expr is an optimized evaluator for expressions of disk-based arrays.
- It is a combination of the Numexpr advanced computing capabilities with the high I/O performance of PyTables.
- Similarly to Numexpr, disk-temporaries are avoided, and multi-threaded operation is preserved.

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

tables.Expr in Action

Evaluating .25*x**3 + .75*x**2 - 1.5*x - 2

```
import tables as tb
f = tb.openFile(h5fname, "a")
x = f.root.x  # get the x input
r = f.createCArray(f.root, "r", atom=x.atom, shape=x.shape)
ex = tb.Expr('.25*x**3 + .75*x**2 - 1.5*x - 2')
ex.setOutput(r)  # output will got to the CArray on disk
ex.eval()  # evaluate!
f.close()
```

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

tables.Expr Performance (In-Core Operation)

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

Other Features of PyTables

- Allows organizing datasets on a hierarchical structure
- Each dataset or group can be complemented with user **metadata**
- Powerful query engine allowing **ultra-fast queries** (based on Numexpr and OPSI)
- Advanced compression capabilities (Blosc)

Why Should You Use Them? In-Core High Performance Libraries Out-of-Core High Performance Libraries

PyTables Pro Query Performance

Francesc Alted Large Data Analysis with Python

- These days, you should understand that there is a CPU starvation problem if you want to get decent performance.
- Make sure that you use NumPy as the basic building block for your computations.
- Leverage existing memory-efficient libraries for performing your computations optimally.

More Info

Francesc Alted

Why Modern CPUs Are Starving and What Can Be Done about It Computing in Science and Engineering, IEEE, March 2010

http://www.pytables.org/docs/CISE-March2010.pdf

NumPy crew

NumPy manual http://docs.scipy.org/doc/numpy

 PyTables site http://www.pytables.org

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Starving CPU Problem	Why Should You Use Them? In-Core High Performance Libraries
High Performance Libraries	Out-of-Core High Performance Libraries

Questions?

Contact:

faltet@pytables.org

Francesc Alted Large Data Analysis with Python

æ

э

→ < ∃ →</p>

A.

Acknowledgments

Thanks to Stéfan van der Walt for giving permission to use his cool multidimensional container picture:

This was made using a Ruby plugin for Google SketchUp.

A (1) > A (1) > A