Ehylables

An on-disk binary data container, query
engine and computational kernel
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Tutorial for the PyData Conference, October 2012, New York City
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10t anniversary of PyTables

Hi!,

PyTables is a Python package which allows dealing with HDF5 tables. Such
a table is defined as a collection of records whose values are stored in
fixed-length fields. PyTables is intended to be easy-to-use, and tries to
be a high-performance interface to HDF5. To achieve this, the newest
improvements introduced in Python 2.2 (like generators or slots and
metaclasses in new-brand classes) has been used. Pyrex creation extension
tool has been chosen to access the HDF5 library.

This package should be platform independent, but until now I've tested it

only with Linux. It's the first public release (v 0.1), and it is in
alpha state.

-- Francesc Alted announcing PyTables 0.1, October 2002
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Overview

 What PyTables is?

* Data structures in PyTables \/

 Compressing data

* Advanced capabilities in PyTables
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Notebooks for tutorial

http://pytables.org/download/PyDatal012-NYC.tar.gz
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What it is

* A binary data container for on-disk, structured
data

e Can perform operations with data *on-disk*
* Based on the standard de-facto HDF5 format

* Free software (BSD license)
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About HDF5
(Hierarchical Data File version 5)

* A versatile data model that can represent

complex data objects as well as associated
metadata

* A portable file format with no limit on the
number or size of data objects in the collection

* Implements a high-level APl with C, C++, Fortran
90, and Java interfaces

* Free software (BSD, MIT kind of license)
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PyTables distinctive features

e Supports a good range of compressors: Zlib,
bzip2, LZO and Blosc

 Powerful query capabilities for Table objects,
including indexing

e Can perform out-of-core operations very
efficiently
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What it is not

* Not a relational database replacement
* Not a distributed database

* Not extremely secure or safe (it’s more about
speed!)

* Not a mere HDF5 wrapper
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DATA STRUCTURES
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Data structures

* High level of flexibility for structuring your
data:

— Datatypes: scalars (numerical & strings), records,
enumerated, time...

— Tables support multidimensional cells and nested
records

— Mutidimensional arrays
— Variable length arrays
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The Array object

* Easy to create:
— file.createArray(mygroup, ‘array’, numpy_arr)

* Shape cannot change
e Cannot be compressed
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The CArray object

* Datais stored in chunks
* Each chunk can be compressed independently

* Shape cannot change
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The EArray object

e Data is stored in chunks

* Can be compressed

e Shape can change (either enlarged or shrunk)
 Shape must be kept regular
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The VLArray object

e Datais stored in variable length rows
 Can be enlarged or shrunk
e Data cannot be compressed
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The Table object

e Data is stored in chunks
* Can be compressed
 Can be enlarged or shrunk

* Fields cannot be of variable length
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Dataset hierarchy

! root \

I I

! groupl \ ! group?2 \

I I |
tablel table?2 ! array
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Attributes:
Metadata about data

Date: Jul 24 2006

Observations: 555

CF:[0.1, 0.3, 0.6]
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COMPRESSION CAPABILITIES
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Why compression?

* Lets you store more
data using the Original Compressed

dataset
Same Space

CPU time is cheap
compared with disk

Disk interface

aCCessS

Decompression

. CE—

* Different Memory (RAM)

-
e Uses more CPU, but Disk ¢
]

compressors for
different uses:
bzip2, zlib, Izo,
blosc
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Why Blosc?

Original Compressed

Decompression

-

CPU Cache

Memory (RAM)
Bus Memory ¢

Ay, CONTINUUM
L )
U=



Accelerating 1/0

Other
compressors

} Blosc
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Memory access vs CPU cycle time
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Laptop computer back in 2005

Jo Decompression speed (256.0 MB, 8 bytes, 19 bits)

memcpy (read from memory)
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State of the art computer in 2012
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OUT-OF-CORE COMPUTATIONS
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Operating with disk-based arrays

e tables.Expris an optimized evaluator for
expressions of disk-based arrays.

* |tis a combination of the Numexpr advanced
computing capabilities with the high 1/0
performance of PyTables.

e Similarly to Numexpr, disk-temporaries are

avoided, and multi-threaded operation is
preserved.
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Avoiding temporaries with Numexpr

Computing "a*b+c" with NumPy. Temporaries goes to memory. Computing "a*b+c" with Numexpr. Tempor:

— \
—E—
K b C a*b+c
mory

/><\

a*b

Tables.Expr follows the same approach,
but with disk instead of memory
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Performing out-of-core computations
with PyTables

Dataset 1 Dataset 2 Result

Disk
(compressed data)

Blosc decompression Blosc compression
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ADVANCED QUERY CAPABILITIES
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Different query modes

Regular query:

[ r[‘cl’] for r in table
if r(‘c2’] > 2.1 and r[‘c3’] == True)) ]

In-kernel query:
[ r[‘cl’] for r in table.where(’(c2>2.1)&(c3==True)’) 1]

Indexed query:
table.cols.c2.createlIndex ()

table.cols.c3.createlndex ()
[ r[‘cl’] for r in table.where(‘(c2>2.1)&(c3==True)’) ]
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Regular and in-kernel queries

Query time for complex query and 10 Mrow (not indexed)

10° ; _
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.P CONTINUUM

L )
o



Customizable indexes

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 beta2 vs PostgreSQL 8.2.6)

Bl Optlevel O
sl I Optlevel 6
[ Optlevel 9
5 ol 15x lighter
)
8
N B —
2 4
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0 Original  UltraLight Light Medium Full PostgreSQL
column
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Indexed query performance

5 Query time for complex query and 1 Grow (indexed)
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Concepts to take home

* PyTables is optimized to deal with data on disk

* Most of the operations use the iterator/
generator machinery in Python: the goal is not
to bloat memory with data

e Queries, indexes and out-of-core operations
are good examples of the above
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Thank you!

e Questions?
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