
High Performance Data Management
with PyTables & Family

Francesc Alted
falted@carabos.com

September 3th, 2004

SciPy ’04 Conference @ CalTech, Pasadena, California

 Outline

 Who are we?

 What is PyTables and why does it exist?

 ViTables (interactive demonstration)

 What’s new in PyTables 0.9

 Reliability and performance in 0.9

 CSTables (PyTables goes Client-Server)

 Final remarks

 Who are we?

 Cárabos is the company committed to PyTables
development and deployment

 We have years of experience in designing software solutions
for handling extremely large data sets

 What we offer:
 Commercial support for PyTables & companion products
 PyTables-based applications
 Consulting services for managing complex data environments

 Motivation

 Many scientific applications need to save and read very large
quantities of data. Analysing this data effectively is a
challenge.

 Computers are powerful enough to deal with very large data
sets. But, can people handle that and not expire in the
attempt?

 Requirements of a data management application:
 Analysis is an iterative process: interactivity
 Reading the data over and over: efficiency
 Solid and flexible framework that would allow the user to provide a clear

structure to his data

 Easy management

 PyTables is a Python package designed with these
requirements in mind!

 What does PyTables offer?

 Interactivity
 The user can take immediate action based on previous feedback
 This greatly accelerates the process of data mining

 Efficiency
 Very important when interactivity is an issue

 Hierarchical structure
 Break your data into smaller, related chunks
 Intuitive way to categorize data

 Object-oriented interface
 Datasets become objects that can be easily manipulated
 In a hierarchical structure, objects facilitate data browsing

 When PyTables can be useful

 Situations where one has to store and efficiently retrieve very
large amounts of data. Some examples:

 Scientific applications
 Meteorology
 Astronomy
 Genetics
 Medicine (Physiological sensors, ...)

 Industrial applications
 Data acquisition of sensors
 Real time monitoring

 Data acquisition from IT applications
 Tracing data from routers
 System log monitoring
 Security alerts (Firewalls, IDS, ...)

 What’s behind PyTables

 PyTables relies on powerful software to achieve its goals:

 Python -- Everyone here knows that (2.2 version needed
because generators are heavily used)

 HDF5 -- General purpose library and file format for storing
scientific data

 numarray -- Next generation of the well-known Numerical
Python package

 Pyrex -- Tool to make Python extensions with a Python-like
syntax

 ViTables (visualize PyTables datafiles)

 Easy-to-use graphical user interface for viewing data (and
metadata) in PyTables files

 It uses PyTables and the excellent Qt graphic library, so it is
available on most platforms (ViTables runs on most Unix,
Linux, MacOSX and Windows systems)

 Can be used as well as a starting point for creating
PyTables-based graphical applications (prototyping)

 ViTables main features

 Visualizes the object tree graphically
 Can open an independent view for each dataset
 Offers information about the metadata present in nodes
 Can open several files simultaneously
 Can move or copy datasets or complete sub-hierarchies

from one group to another, even between different files

 Great browseable documentation
 As a PyTables companion, it deals very well with extremely

large datasets (tables exceeding one billion rows)

 ViTables interactive demonstration

 Future plans for ViTables

 Implement graphical row modification & deletion in tables
and arrays

 Create an automated test suite
 Improve stability and reliability
 Improve the documentation
 Create a binary installer for Windows (MacOSX?) platforms
 Release the version 1.0 (most likely dual-licensed) by the

end 2004

 What’s new in PyTables 0.9?

 Table values can be modified (yes, finally :)

 In-kernel selections

 Indexed selections

 Improved speed for large row sizes in Table objects

 Modification of values in tables

 In PyTables 0.9 two ways of modifying values in Table objects
have been introduced

 Row modification
 rows = numarray.records.array([[457,’db1’,1.2],[6,’de2’,1.3]],
 formats="i4,a3,f8")
 table.modifyRows(start=1, stop=4, step=2, rows=rows)
 table[1:4:2] = rows # shortcut

 Column modification
 table.modifyColumns(start=1, step=2, columns=[[2,3,4]], names=["col1"])
 table.cols.col1[1:7:2] = [2,3,4] # shortcut
 # Modify several columns at time:
 columns = [["aaa","bbb","ccc"], [1.2, .1, .3]]
 table.modifyColumns(start=1, columns=columns, names=["col2", "col3"])

 In-kernel & Indexed selections

 In-kernel selections:
 Like regular selections, but more efficient
 Condition is passed "as is" to the PyTables C extension
 Can be between 2 to 5 times faster than regular selections

 Indexed selections:
 An index is created in the same data file
 Can be 5 to 500 times faster than traditional selects (but slower under

some situations!)

 All scalar types are supported (string, ints, floats and
booleans)

 Limitation: you can only pass conditions on a single column

 In-kernel & Indexed selections syntax

 SQL syntax
 e = cursor.execute(select sum(col1) from table where 3 < col2 <= 20)

 Traditional search in PyTables:
 # Compute the sum of the column "col1" values that pass the selection
 e = sum([row[’col1’] for row in table if 3 < row[’col2’] <= 20])
 # Using generator expressions to save memory (you need Python 2.4!)
 e = sum(row[’col1’] for row in table if 3 < row[’col2’] <= 20)

 In-kernel selection:
 e = sum(row[’col1’] for row in table.where(3<table.cols.col2<=20))

 Indexed selection:
 table.cols.col2.createIndex() # Create the index
 e = sum(row[’col1’] for row in table.where(3<table.cols.col2<=20))

 Mixed selections:
 e = sum(row[’col1’] for row in table.where(3<table.cols.col2<=20)
 if row[’col3’] == 2 and row[’col1’] > 4)

 Always pass the more restrictive selections to the "where" method!

 How fast is fast?

 Several benchmarks have been conducted in order to know
if PyTables is competitive with existing tools to save data
persistently

 Comparisons have been made with SQLite (a fast relational
database)

 The benchmarks tested writing and selecting table data
under a series of conditions

 Two basic parameters were changed in each test to
comparatively measure I/O performance:

 The number of rows in the table
 The selection method (regular iterator, in-kernel and indexed)

 Dataset election

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

Linear distribution

 0

 10000

 20000

 30000

 40000

 50000

 0 10 20 30 40 50 60 70 80 90 100

Normal distribution

 The normal distribution has been chosen because it should be
more like "real life" data

 Benchmark platform description

 AMD Opteron @ 1.6 GHz and 8 GB RAM
 IDE disk @ 7200 RPM
 PyTables 0.9 (beta)
 Python 2.3.3
 HDF5 1.6.2
 numarray 1.0
 SuSe GNU/Linux 8.0 (Enterprise)
 Linux Kernel 2.4.21
 GCC 3.2.2 compiler
 SQLite 2.8.14
 PySQLite 0.5

 PyTables vs SQLite (time to write entries)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Ti
m

e
(s

ec
on

ds
)

Number of rows

Writing time (without indexing)

PyTables
PyTables zlib

SQLite

 PyTables vs SQLite (time to create index)

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Ti
m

e
(s

ec
on

ds
)

Number of rows

Index creation time

PyTables
PyTables zlib

SQLite

 PyTables vs SQLite (disk usage w/index)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

S
iz

e
(M

B
)

Number of rows

Total file size (data+indexes)

PyTables
PyTables zlib

SQLite

 PyTables vs SQLite (non-indexed search)

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Ti
m

e
(s

ec
on

ds
)

Number of rows

Selection time (without indexation)

PyTables standard
PyTables in-kernel

SQLite

 PyTables vs SQLite (indexed search)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Tim
e (

se
co

nd
s)

Number of rows

Selection time (Indexed, Index not in cache)

PyTables
PyTables zlib

SQLite

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Tim
e (

se
co

nd
s)

Number of rows

Selection time (Indexed, Index in cache)

PyTables
PyTables zlib

SQLite

 PyTables selection modes comparison

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Ti
m

e
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables

Standard
In-kernel

Indexed (index not in cache)
Indexed (index in cache)

 Conclusions from benchmark

 Writing
 PyTables tipically write more than 100 times faster than SQLite
 SQLite files occupies 3 to 5 times more space than PyTables; if

compression is used, these ratio can double

 SQLite time indexing cost for very large tables is prohibitive; however,
PyTables keeps this cost relatively small

 Reading
 In-kernel selections can be up to 5 times faster than standard and up to

10 times faster than SQLite (for very large tables)

 Indexed selections can be up to 500 times faster than standard
 When the index is in-cache, SQLite can be up to 10 times faster than

PyTables for moderately large table sizes (but does not scales well)

 PyTables indexing can be applied to much larger tables than SQLite

 Reliability

 Developing software suited for production environments is a
very important design goal

 Test suite based on UnitTest, the standard Python unit
testing framework

 A lot of effort has been put into making the test suite as
complete a possible

 More than 2000 tests units (represents more than 12000
lines of pure code) are now incorporated; more will be added
and quality will only improve as PyTables evolves

 PyTables limitations and plans for future

 Object elements can not be related to other elements (i.e. no
references support)

 Table elements cannot be of variable length
 Deleting rows in tables is slow
 Modifying elements in *Array objects is not yet supported
 Optimization of some corner cases

 CSTables: PyTables goes Client-Server

 CSTables is the client-server implementation of PyTables
 Provides the possibility of using PyTables remotely and

concurrently

 Uses the Twisted (www.twistedmatrix.org) package’s
excellent networking capabilities

 CSTables usage

 The API is much the same as the PyTables API
 PyTables API:
 import tables
 fileh=tables.openFile("file.h5")
 print fileh.root.table.cols.col1[:]
 fileh.close()

 CSTables API:
 import client, commontables
 c=client.TablesClient()
 root=c.connect()
 gltables=root.getTablesApplicationRoot()
 fileh=gltables.openFile("file.h5")
 print fileh.root.table.cols.col1[:]
 fileh.close()

 Some (very few) instructions added to control:
 Server execution parameters
 Concurrent mode execution

 CSTables client cache

 CSTables caches some of the metadata of the PyTables
object tree

 When a client makes a change to the metadata, this change
is pushed to the other clients’ caches

 Easy to control which attributes should be cached and which
shouldn’t

 Object is to cache primarily read-only attributes
 Caveat emptor: Caching attributes that are updated very often

generates more traffic than attributes that are not cached at all

 CSTables concurrency issues

 CSTables does not provide threading or ayncronous features
yet

 So, how it deals with several requests at a time?
 Large data read and write requests are splitted into smaller

chunks

 This considerably improves server response time
 In addition, CSTables provides a lock mechanism that allows

applications to explicitly put a lock on a node or on an entire
subtree

 The locks offer different blocking access modes: READ,
WRITE and ALL

 CSTables status & availability

 The main features are already implemented and working
(95% of PyTables tests already pass)

 Focus now is on checking & debugging possible errors, as
well as providing a 100% compatibility with PyTables API

 This will allow to have a client version of ViTables very easily
 A public release is scheduled for the end of this year
 Future directions: Java interface, SOAP support, threading,

asynchronous communications

 Final remarks

 PyTables & family allows you to process your data
interactively and quickly

 Its powerful writing, reading and selection features makes an
interpreted language like Python powerful enough to get
maximum performance

 The development of ViTables & CSTables has given an
unexpected momentum to the PyTables project. Together
they form an excellent tool suite to deal with extremely large
amounts of data

 PyTables is for real work!

 It has been production-ready for over a year. Its API is fairly
stable; < 1.0 release numbering only shows that all the
desired functionalty is not yet implemented

 It comes with complete documentation both in doc strings
format as well as a high quality 90 pages user’s manual in
PDF and HTML formats.

 Download the latest version (0.9 will be released in
September) and use it for free from:

 http://pytables.sourceforge.net

 Credits

 Carabos Crew:
 Vicent Mas (author of ViTables)
 Andreu Alted (author of CSTables)
 Ivan Vilata (for many, many corrections to this talk and

User’s Manual)

 Pablo Boronat (for providing general support)

 Special Thanks:
 Scott Prater (co-author of the PyTables manual)
 Fernando Pérez (for providing the excellent iPython that is

just great to create this presentation graphs)

 Travis Oliphant and Eric Jones (who offered me the
opportunity to give this talk)

 Thank you!

 Questions?

 www.carabos.com

