
The Data Access Issue
The Role Of Compression

PyTables

Starving CPUs
(and coping with that in PyTables)

Francesc Alted1

1Freelance developer and PyTables creator

Rijnhuizen, September 24th, Nieuwegein - The Netherlands

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

First Commodity Processors
(Early and middle 1980s)

Processors and memory evolved more or less in step.

Memory clock access in early 1980s was at ~ 1MHz, the same
speed than CPUs.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel 8086, 80286 and i386
(Middle and late 1980’s)

Memory still pretty well matched CPU speed.

The 16MHz i386 came out; memory still could keep up with it.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel i486 and AMD Am486
(Early 1990s)

Increases in memory speed started to stagnate, while CPU
clock rates continued to skyrocket to 100 MHz and beyond.

In a single-clock, a 100 MHz processor consumes a word from
memory every 10 nsec. This rate is impossible to sustain even
with present-day RAM.

The first on-chip cache appeared (8 KB for i486 and 16 Kb for
i486 DX).

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel Pentium and AMD K5/K6
(Middle and late 1990s)

Processor speeds reached unparalleled extremes, before hitting
the magic 1 GHz figure.

A huge abyss opened between the processors and the memory
subsystem: up to 50 wait states for each memory read or write.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel Pentium 4 and AMD Athlon
(Early and middle 2000s)

The strong competition between Intel and AMD continued to
drive CPU clock cycles faster and faster (up to 0.25 ns, or 4
GHz).

The increased impedance mismatch with memory speeds
brought about the introduction of a second level cache.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel Core2 and AMD Athlon X2
(Middle 2000s)

The size of integrated caches is getting really huge (up to 12
MB).

Chip makers realized that they can’t keep raising the frequency
forever → enter the multi-core age.

Users start to scratch their heads, wondering how to take
advantage of multi-core machines.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel Core2 and AMD Athlon X2
(Middle 2000s)

The size of integrated caches is getting really huge (up to 12
MB).

Chip makers realized that they can’t keep raising the frequency
forever → enter the multi-core age.

Users start to scratch their heads, wondering how to take
advantage of multi-core machines.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Intel Core i7 and AMD Phenom
(Late 2000s)

4-core on-chip CPUs become the most common configuration.

3-levels of on-chip cache is the standard now.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Where we are now
(2009)

Memory latency is much slower (around 150x) than processors
and has been an essential bottleneck for the past fifteen years.

Memory throughput is improving at a better rate than memory
latency, but it is also lagging behind processors (about 25x
slower).

In order to achieve better performance, CPU makers are
implementing additional levels of caches, as well as increasing
cache size.

Recently, CPU speeds have stalled as well, limited now by
power dissipation problems. So, in order to be able to offer
more speed, CPU vendors are packaging several processors
(cores) in the same die.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

The CPU Starvation Problem

Over the last 25 years CPUs have undergone an exponential
improvement on their ability to perform massive numbers of
calculations extremely quickly.

However, the memory subsystem hasn’t kept up with CPU
evolution.

The result is that CPUs in our current computers are suffering
from a serious starvation data problem: they could consume
(much!) more data than the system can possibly deliver.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Can’t Memory Latency Be Reduced to Keep Up with CPUs?

To improve latency figures, we would need:

more wire layers
more complex ancillary logic
more frequency (and voltage):

Energy = Capacity x Voltage2 x Frequency

That’s too expensive for commodity SDRAM.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

What Is the Industry Doing to Alleviate CPU Starvation?

They are improving memory throughput: cheap to implement
(more data is transmitted on each clock cycle).

They are adding big caches in the CPU dies.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Why Is a Cache Useful?

Caches are closer to the processor (normally in the same die),
so both the latency and throughput are improved.

However: the faster they run the smaller they must be.

They are effective mainly in a couple of scenarios:

Time locality: when the dataset is reused.
Spatial locality: when the dataset is accessed sequentially.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Time Locality

Parts of the dataset are reused

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Spatial Locality

Dataset is accessed sequentially

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Once Upon A Time...

In the 1970s and 1980s many computer scientists had to learn
assembly language in order to squeeze all the performance out
of their processors.

In the good old days, the processor was the key bottleneck.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Nowadays...

Every computer scientist must acquire a good knowledge of
the hierarchical memory model (and its implications) if they
want their applications to run at a decent speed (i.e. they do
not want their CPUs to starve too much).

Memory organization has become now the key factor for
optimizing.

The BIG difference is. . .

. . . learning assembly language is relatively easy, but understanding
how the hierarchical memory model works requires a considerable
amount of experience (it’s almost more an art than a science!)

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

Nowadays...

Every computer scientist must acquire a good knowledge of
the hierarchical memory model (and its implications) if they
want their applications to run at a decent speed (i.e. they do
not want their CPUs to starve too much).

Memory organization has become now the key factor for
optimizing.

The BIG difference is. . .

. . . learning assembly language is relatively easy, but understanding
how the hierarchical memory model works requires a considerable
amount of experience (it’s almost more an art than a science!)

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

The Blocking Technique I

When you have to access memory, get a contiguous block that fits
in the CPU cache, operate upon it or reuse it as much as possible,
then write the block back to memory:

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

The Blocking Technique II

This is not new at all: it has been in use for out-of-core
computations since the dawn of computers.

However, the meaning of out-of-core is changing, since the
core does not refer to the main memory anymore: it now
means something more like out-of-cache.

Although this technique is easy to apply in some cases (e.g.
element-wise array computations), it can be potentially
difficult to efficiently implement in others.

Good News!

Fortunately, many useful algorithms using blocking have been
developed by others that you can use ,

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

A Bit of Computing History
CPU Starvation
Fighting CPU Starvation

The Blocking Technique II

This is not new at all: it has been in use for out-of-core
computations since the dawn of computers.

However, the meaning of out-of-core is changing, since the
core does not refer to the main memory anymore: it now
means something more like out-of-cache.

Although this technique is easy to apply in some cases (e.g.
element-wise array computations), it can be potentially
difficult to efficiently implement in others.

Good News!

Fortunately, many useful algorithms using blocking have been
developed by others that you can use ,

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Compression Process

A compression algorithm looks in the dataset for redundancies
and dedups them. The usual outcome is a smaller dataset:

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Role Of Compression In Data Access

Compression has already helped accelerate reading and writing
large datasets from/to disks over the last 10 years.

It generally takes less time to read/write a small (compressed)
dataset than a larger (uncompressed) one, even taking into
account the (de-)compression times.

Crazy question:

Given the gap between processors and memory speed, could
compression accelerate the transfer from memory to the processor,
also?

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Role Of Compression In Data Access

Compression has already helped accelerate reading and writing
large datasets from/to disks over the last 10 years.

It generally takes less time to read/write a small (compressed)
dataset than a larger (uncompressed) one, even taking into
account the (de-)compression times.

Crazy question:

Given the gap between processors and memory speed, could
compression accelerate the transfer from memory to the processor,
also?

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Reading Compressed Datasets

Transmission + decompression processes faster than direct transfer?

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Writing Compressed Datasets

Compression + transmission processes faster than direct transfer?

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Challenge: Faster Memory I/O By Using Compression?

What we need:

Extremely fast compressors/decompressors.

What we should renounce:

High compression ratios.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Challenge: Faster Memory I/O By Using Compression?

What we need:

Extremely fast compressors/decompressors.

What we should renounce:

High compression ratios.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Applications for Fast In-Memory Compression

We could store more data in a given amount of RAM.

When a large quantity of data needs to be accessed
sequentially, access time could be reduced (if compression is
fast enough).

Not good for random access. . .

To get a single word, you would need to uncompress an entire
compressed block.

But. . .

Many algorithms out there have already been blocked: it should be
easy to implement compression for them.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Applications for Fast In-Memory Compression

We could store more data in a given amount of RAM.

When a large quantity of data needs to be accessed
sequentially, access time could be reduced (if compression is
fast enough).

Not good for random access. . .

To get a single word, you would need to uncompress an entire
compressed block.

But. . .

Many algorithms out there have already been blocked: it should be
easy to implement compression for them.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Applications for Fast In-Memory Compression

We could store more data in a given amount of RAM.

When a large quantity of data needs to be accessed
sequentially, access time could be reduced (if compression is
fast enough).

Not good for random access. . .

To get a single word, you would need to uncompress an entire
compressed block.

But. . .

Many algorithms out there have already been blocked: it should be
easy to implement compression for them.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Current State Of Compressors

Generally speaking, current compressors do not yet achieve
speeds that would allow programs to handle compressed
datasets faster than uncompressed data.

As CPUs have become faster, the trend has been to shoot for
high compression ratios, and not so much to reach faster
speeds.

There are some notable exceptions like LZO, LZF and FastLZ,
which are very fast compressor/decompressors, but they’re still
not fast enough to hit our goal.

We need something better!

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

The Current State Of Compressors

Generally speaking, current compressors do not yet achieve
speeds that would allow programs to handle compressed
datasets faster than uncompressed data.

As CPUs have become faster, the trend has been to shoot for
high compression ratios, and not so much to reach faster
speeds.

There are some notable exceptions like LZO, LZF and FastLZ,
which are very fast compressor/decompressors, but they’re still
not fast enough to hit our goal.

We need something better!

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Blosc: A BLOcking, Shuffling & Compression Library

Blosc is a new, lossless compressor for binary data. It’s
optimized for speed, not for high compression ratios.

It is based on the FastLZ compressor, but with some additional
tweakings:

It works by splitting the input dataset into blocks that fit well
into the level 1 cache of modern processors.
It can shuffle bytes very efficiently for improved compression
ratios (using the data type size metainformation).
Makes use of SSE2 vector instructions (if available).

Free software (MIT license).

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Blocking: Divide And Conquer

Blosc achieves very high speeds by making use of the well-known
blocking technique:

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Pros And Cons Of Blocking

Very fast

Compresses/decompresses at L1 cache speeds.

Lesser compression ratio

The block is the maximum extent in which redundant data can be
identified and de-dup’d.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Pros And Cons Of Blocking

Very fast

Compresses/decompresses at L1 cache speeds.

Lesser compression ratio

The block is the maximum extent in which redundant data can be
identified and de-dup’d.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Blosc and In-Memory Datasets

Several benchmarks have been conducted in order to analyze
how Blosc performs in comparison with other compressors
when data is in-memory.

The benchmarks consist in reading a couple of datasets from
OS filesystem cache, operating upon them and writing the
result to the filesystem cache again.

Datasets analyzed are synthetic (low entropy, so highly
compressibles) and real-life (medium/high entropy, difficult to
compress well), in both single and double-precision versions.

Synthetic datasets do represent important corner use cases:
sparse matrices, regular grids. . .

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Performing A Certain Computation (Synth Data)

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

Performing A Certain Computation (Real Data)

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Motivation

Many applications need to save and read very large amounts of
data. Coping with this is a real challenge!

Most computers today can deal with such large datasets.
However, we should ask for an interface that should be usable
by human beings.

Requirements:

Interactivity: data analysis is an iterative process.
Need to re-read many times the data: efficiency.
Easy categorization of data.
Ability to keep data for long time.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

What Does PyTables Offer?

Interactivity You can take immediate action based on previous
feedback.

Efficiency Improves your productivity (very important for
interactive work).

Hierarchical structure It allows you to categorize your data into
smaller, related chunks.

Backward/Forward compatibility Based on HDF5, a general
purpose framework with a great commitment with
backward/forward compatibility.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Example Of Hierachical Structure

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

PyTables Highlights (I)

High level of flexibility for structuring your data:

Datatypes: scalars (numerical & strings), records, enumerated,
time...
Tables support multidimensional cells
Tables support nested records
Mutidimensional arrays
Variable length arrays

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

PyTables Highlights (II)

Transparent data compression support (Zlib, LZO, Bzip2...).

Support of full 64-bit addressing in files, even on 32-bit
platforms.

Can handle generic HDF5 files (most of them).

Aware of little/big endian issues (data is portable).

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Easy Of Use

Natural naming

access to file:/group1/table

table = file.root.group1.table

Support for generalized and fancy indexing

array[idx, start:stop, :, start:stop:step] # hyperslicing

array[1, [1,5,10], ..., -1] # sparse reads (since 2.2)

Support for iterators

get the values in col1 that satisfy a certain condition

[r[’col1’] for r in table.where((1.3 < col3) & (col2 <= 2.))]

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

How PyTables Fights CPU Starvation?

Basically, by applying blocking techniques and by leveraging high
performance packages like:

HDF5 A library & format thought out for managing very
large datasets in an efficient way.

NumPy A Python package for handling large homogeneous
and heterogeneous datasets.

Numexpr Increase the performance of NumPy in complex
operations by applying blocking.

Blosc A high-performance compressor meant for binary data
(available in the short future).

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

PyTables Pro

It is an enhanced version of PyTables. It sports:

Column indexing Queries in tables having up to 1 billion rows can
be typically done in less than 1 second.

Customizable index quality The indexes can be created with an
optimization level (specified as a number ranging
from 0 to 9).

Improved cache system for both metadata and regular data. Allows
for maximum speed during intensive node browsing
and data queries.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Outline

1 The Data Access Issue
A Bit Of (Personal) Computing History
CPU Starvation
Techniques For Fighting CPU Starvation

2 The Role Of Compression In Data Access
Eliminating Data Redundancy
Blosc: A BLOcked Shuffler & Compressor
Some Benchmarks

3 The PyTables Package and the Data Access Issue
Introduction to PyTables
PyTables User Experiences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Some PyTables Use Cases

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Risk Analysis In Dam Safety

We need a database capable of dealing with several GB of
information and PyTables is working great for us.

Best points:

Easy integration of PyTables with our existing code.
Speed.
Seamlessly support for compressed data.
Great user support.

– Armando Serrano

Institute of Water Engineering and Environment

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Finite Element Solver For Micromagnetic Problems

We do not know at coding time what type of data the user
may use and how often they decide to save the data, so
flexibility is crucial. PyTables provides just that flexibility.

Best points:

We get very significant space savings when saving field data.
Inbuilt compression reduces memory consumption significantly
without slowing the process down.
Allows to quickly write code that saves complicated and
hard-to-predict data structures.

– Hans Fangohr

School of Engineering Sciences

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Atmospheric sciences

PyTables is used in the assimilation of radar data into storm-
resolving models to produce 3D analysis of severe storms for
research and potentially forecasts.

Best points:

Fast data searches.
Allow us doing things like only assimilating certain variables at
certain levels of the atmosphere, or changing what variables
are assimilated and when.
I liked the API.

– Louis J. Wicker

NOAA National Severe Storms Laboratory in Norman Oklahoma

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Neuroscience And Behavioural Science

I save raw neuroelectrical signals and filtered versions of them
in a HDF5 file; I use tables to register events (i.e. where in the
data there are stimuli, which can be tens of thousands).

Best points:

Ability to work with large numeric arrays (8 hours of recording
32 channels at 14000 Hz).
The entire database fits in a single file: easy to manage.
Flexible queries.

– Gabriel J.L. Beckers

Ornithology Institute, Department of Behavioural Neurobiology

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Operations Research

I store results of numerical experiments. I also use it to store
the state spaces of large markov chains.

Best points:

Format is free.
Supports metadata for annotation purposes.
One single file is enough for carrying all the data.

– Nicky Van Foreest

University of Groningen

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Multi-Camera Tracking Of Flying Flies

We save our data as PyTables files as a matter of course. This
is typically 3 GB/day/experiment.

Best points:

Its integration with NumPy and its fast searching set it apart
from other possible solutions.
The ease and speed to analyze data interactively far surpasses
other systems I’ve worked with.
Extremely responsive development team in responding to bug
reports and feature requests.

– Andrew D. Straw

California Institute of Technology

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Nuclear Fuel Rod FEM Modeling

PyTables is used to create the file containing the model
geometry/numbering specifications. Our Python
post-processor uses PyTables to extract the table data for
visualization.

Best points:

Easy to use.
Best HDF5 interface for our needs.
Simple to interface with Fortran legacy applications via HDF5
files.

– Stuart Mentzer

Objexx Engineering, Inc.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Particle Physics

I store the relevant information from these events in a
PyTables file where I can easily make additional cuts or make
plots with Matplotlib.

Best points:

PyTables, NumPy, SciPy, and Matplotlib are together my
replacement for ROOT.
Possibility to use variable-length arrays (as well as fixed-length
ones).
I have far more confidence in PyTables than I ever did in
ROOT’s TTree libraries.

– DEMOLISHOR!

Thomas Jefferson National Accelerator Facility

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Plasma Physics

I’m writing a database implementation where PyTables is used
in concert with Ice to provide an easy-to-use interface to large
amounts of data.

Best points:

Open Source.
Provides the necessary performance.
Support for continuous growing datasets.

– Han Genuit

FOM-Institute for Plasma Physics Rijnhuizen

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Final Words

Newer processors will surely improve uncompressed data
processing, but the memory access bottleneck issue will
prevent users from seeing much improvement in performance.

Extremely fast compressors will be able to effectively
accelerate in-memory computations, allowing a much more
effective use of the CPU and memory resources.

PyTables uses a series of techniques, including blocking and
compression, so as to alleviate CPU starvation. This allows to
store and process extremely large datasets more effectively.

Francesc Alted Starving CPUs

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

More Info

Ulrich Drepper
What Every Programmer Should Know About Memory
RedHat Inc.,2007

PyTables: Hierarchical Datasets in Python
http://www.pytables.org

Blosc: A blocking, shuffling and lossless compression library
http://blosc.pytables.org

Francesc Alted Starving CPUs

http://www.pytables.org
http://blosc.pytables.org

The Data Access Issue
The Role Of Compression

PyTables

Introduction to PyTables
PyTables User Experiences

Thank You!

Questions?

Francesc Alted Starving CPUs

	The Data Access Issue
	A Bit Of (Personal) Computing History
	CPU Starvation
	Techniques For Fighting CPU Starvation

	The Role Of Compression In Data Access
	Eliminating Data Redundancy
	Blosc: A BLOcked Shuffler & Compressor
	Some Benchmarks

	The PyTables Package and the Data Access Issue
	Introduction to PyTables
	PyTables User Experiences

