

An Overview of Future
Improvements to OPSI

Francesc Altet

Cárabos Coop. V.

Urbana-Champaign 10/08/07

Features of
 PyTables Pro

 OPSI (Optimized Partially Sorted Indexes)
 Indexing engine optimized for HDF5 features

(chunking, compression, data types)

 Improved LRU node cache performance (up to
20x faster than PyTables Standard)

 Focus on stability (meant for use in production
environments)

 All-in-one installers for Windows and Mac OS X

OPSI Features

 Based on well-tested PSI engine (PyTables 1.x)
 Improvements over PSI

 Better query times
 Selectable index quality
 Complex queries

 Current limitations
 Only one index can be used in a complex

expression
 Only supports compound types, not atomic types

Plans for the Near Future

 Optimize the retrieval of results in queries with
a large number of hits (low selectivity).
 The current algorithm is quite efficient for medium

or high selectivity, but less so for low selectivity

 Ability to use several indexes in complex
queries
 If col1 and col2 are indexed, then the expression
(col1 < 3.1) & (col2 > 2.3)cannot be
computed using both indexes (the first one will be
used instead)

Low Selectivity Retrieval

 A table with 4 columns:
 class Record(tables.IsDescription):
 col1 = tables.Int32Col()
 col2 = tables.Int32Col()
 col3 = tables.Float64Col()
 col4 = tables.Float64Col()

 1 billion rows (1 Gigarow)
 AMD Opteron @ 2 GHz
 SATA disk @ 7200 rpm
 Query:
(lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3)

Low Selectivity Retrieval

Low Selectivity Retrieval

 Current approach:
 Get the set of coordinates satisfying the indexed

part of the query
 Break the set into buckets and read a bucket at a

time (using H5Sselect_elements)

 Read the elements from disk and apply the residual
query

 Return the rows that satisfy the query condition

Current approach

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

Residual expression

Final
results

Index
part of

the query

H5Sselect_elements

Problems with the Current
Approach

 Potential chunk revisiting (and very difficult to
find the chunk in HDF5 cache because of
capacity problems)

 Even if the chunk is found in HDF5 cache, it still
has to be decompressed again

 Non-ordered access to chunks, resulting in
longer disk access times

A Message from the Fifth
Century, BC

“In general, commanding a large number is like
commanding a few. It is a question of dividing up
the numbers. Fighting with a large number is like
fighting with a few. It is a question of configuration

and designation.”

Sun Tzu – The Art of War

Section 5 (Strategic Military Power) verse 1

Solution: A Chunk Map

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

Chunkmap ...
Memory

DiskH5Sselect_hyperslab

Complete query expression

Final
results Memory

Index
part of

the query

Chunkmap Performance

Chunkmap: Pros & Cons

 Pros
 The interesting chunks are visited only once
 Chunks are accessed in a strict sequential order,

minimizing the amount of trips of disk heads
 The chunkmap on disk has much lower entropy

than the original indices: much better compression

 Cons
 It requires memory: 1 byte per chunk. It can be up

to 1 bit per chunk (packed chunkmap)
 It requires more CPU, as the incoming data from

disk has to be filtered through the query condition

How Much Memory is Required
by a Chunkmap?

 Let's imagine a table with 1 billion of rows and
1000 bytes/row. That's around 1 TB in size.

 Size of the chunkmap, depending on the
chunksize:
 32 KB CS: 32 MB (4 MB packed)
 64 KB CS: 16 MB (2 MB packed)
 128 KB CS: 8 MB (1 MB packed)
 256 KB CS: 4 MB (0.5 MB packed)

Optimal Chunksize?

 What is the optimal chunksize for reducing the
chunkmap to a minimum without penalizing
retrieval times too much?

 We have to choose a size that takes a relatively
short time to read compared with disk access
times (the main bottleneck in sparse reads)

 What is the mean latency when doing sparse
reads?

Typical Disk Access Times

Average rotational latency: 4.1 ms
Seek times: from 2 ms to 18 msTimes for 7200 rpm drives

Typical Disk Access Times

 For general random sparse access data on
disk, these figures usually give 12 ~ 15 ms

 However, for sequentially ordered sparse
access of chunks that are close to each other,
the typical times are bound by the rotational
latency or less, i.e. <= 4.1 ms access times.

Optimal Chunksize (revisited)

 The optimal chunksize for reducing the amount
of memory allocated to the chunkmap has to be
chosen so that reads would constitute a
relatively small fraction of the average rotational
latency of a disk

 The most significant cost in time to process the
chunk is the sum of:
 The time to physically read it from disk
 The time to uncompress it
 The time to apply the query condition to it

Times to Process a Chunk

 This depends on many factors. For an
example, we will choose:
 Chunk size: 128 KB
 Compression on (225% of reduction)
 Modern 7200 rpm SATA disk drive
 Modern CPU (Intel Core2 or AMD Opteron)
 Query Filter:

 (lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3)

Times to Process a Chunk

I/O ZLIB Query Filter Shuffle LZO2
0

100

200

300

400

500

600

700

800

Times (μs) for a 128 KB chunk (57 KB compressed)

Using ZLIB: 1.8 ms Using LZO2: 1.3 ms

Times for Different Chunksizes

 Times and overhead for low selectivity:
 32 KB: 0.45 ms, 11% overhead
 64 KB: 0.90 ms, 22% overhead
 128 KB: 1.8 ms, 44% overhead
 256 KB: 3.6 ms, 88% overhead

 32 KB or 64 KB would be a good choice for
increased low selectivity retrieval speed

 128 KB would strike a good balance between
overhead (44%) and the memory used by the
chunkmap (8 MB, or 1 MB packed)

Times for Different Chunksizes

Some Considerations

 The query conditions are evaluated very
efficiently thanks to the NumExpr computing
kernel integrated into PyTables

 Compression reduces the total I/O time. Not
new, but interesting anyway

 The use of LZO2 compressor can be very
effective in this scenario (as compared to ZLIB)

 Shuffle takes longer than LZO2, but is worth the
while: compression is much higher

A Few Words About NumExpr

 Fast evaluation of array expressions element-
wise by using a vector-based virtual machine

 It works by splitting up the operand arrays in
chunks that fit into the cache of CPUs, allowing
the CPU to attain very high-performance while
performing the operations

 We have added support for boolean and string
types, heterogeneous arrays (compound
types), and optimized the amount of memory
copies of unaligned arrays

Using MultiCore CPUs

 Nowadays, it is possible to use multicore CPUs
and concurrent programming with threads to
further accelerate the reading process in low
selectivity environments

MultiCore & Threaded Disk
Access

The I/O buffer is empty
Gather more data

The I/O buffer is full
Deliver elements to Python space

Read

Uncompress

Select

Read

Uncompress

Select

Thread 1
Core 1

Thread 2
Core 2

- The computations overlap
with I/O

- The only bottleneck is
disk speed

- Up to 1.3x speed-up

Multicore & RAID

 With the advent of multicore CPUs, having a 2,
4 or 8-core system is not uncommon in current
workstations

 In addition, drastic reductions in the cost of a
medium-sized disk (500 GB costs about $120),
makes it possible to build cheap but fast RAID
systems reaching multi-TB of capacity

 This system configuration should be considered
the norm right now!

Multicore & RAID

Read

Uncompress

Select

Thread 1
Core 1

Read

Uncompress

Select

Thread 2
Core 2

Read

Uncompress

Select

Thread 3
Core 3

Read

Uncompress

Select

Thread 4
Core 4

Empty I/O buffer

Full I/O buffer

The different cores can
keep pace with the high
read performance
delivered by the RAID

Using Several Indexes in Queries

 Perhaps the most appealing use of chunkmaps
is that they can utilize several indexes on a
single query

 Examples:
 '(pressure < 20) & (temperature > 50)'

current OPSI is not able to use the indexes
simultaneously

 '(pressure < 20) | (temperature > 50)'
current OPSI can't use any index (because the
conditions are 'ORed')

Using Several Indexes in Queries

 '(pressure < 20) | (temperature > 50)'

Pressure ChunkmapPressure Chunkmap Temperature Chunkmap

Logical OR

Chunk 1 ...Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

H5Sselect_hyperslab

Combined Chunkmap ...

Using Several Indexes in Queries

 NumExpr will be used to combine any amount
of logical combinations among chunkmaps

 Challenge: From a potentially complex query
expression such as:
((pressure < 20) & (temperature > 50) |
 ((lati < 20) & (lati >=40) & (longi < 30))

find the maximum number of usable indexes
 This can represent a fair amount of work for

very complex expressions!
 Start with the simplest ones and refine the

query optimization as needed (not new)

Medium/Long Term Goals

 Try reducing the precision of values of the
indexes
 Faster convergence during index creation
 Less entropy: better compression, less disk space
 Inexact results in queries

 Column-wise tables
 Current table datasets in PyTables are row-wise
 They are perfect for dealing with tables with a

small/medium number of fields
 Column-wise may prove to be more efficient in

scenarios where a large number of fields is required

Final Thoughts

 Chunkmaps seem like a good idea for OPSI
 They perform much better when the selectivity is

low, while retaining the same efficiency for high
selectivity queries

 They permit the use of several indexes in complex
queries without too much effort (not taking into
consideration the battle to optimize queries!)

 Precision reduction seems easy to implement
 Column-wise tables can be very interesting in

some scenarios, but implementation could be
difficult

