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Features of
 PyTables Pro

 OPSI (Optimized Partially Sorted Indexes)
 Indexing engine optimized for HDF5 features 

(chunking, compression, data types)

 Improved LRU node cache performance (up to 
20x faster than PyTables Standard)

 Focus on stability (meant for use in production 
environments)

 All-in-one installers for Windows and Mac OS X



  

OPSI Features

 Based on well-tested PSI engine (PyTables 1.x)
 Improvements over PSI

 Better query times
 Selectable index quality
 Complex queries

 Current limitations
 Only one index can be used in a complex 

expression
 Only supports compound types, not atomic types



  



  

Plans for the Near Future

 Optimize the retrieval of results in queries with 
a large number of hits (low selectivity).
 The current algorithm is quite efficient for medium 

or high selectivity, but less so for low selectivity

 Ability to use several indexes in complex 
queries
 If col1 and col2 are indexed, then the expression 
(col1 < 3.1) & (col2 > 2.3)cannot be 
computed using both indexes (the first one will be 
used instead)



  

Low Selectivity Retrieval

 A table with 4 columns:
  class Record(tables.IsDescription):
      col1 = tables.Int32Col()
      col2 = tables.Int32Col()
      col3 = tables.Float64Col()
      col4 = tables.Float64Col()

 1 billion rows (1 Gigarow)
 AMD Opteron @ 2 GHz
 SATA disk @ 7200 rpm
 Query:
(lower<=col4) & (col4<=upper) & 
(sqrt(col1+3.1*col2+col3*col4) > 3)



  

Low Selectivity Retrieval



  

Low Selectivity Retrieval

 Current approach:
 Get the set of coordinates satisfying the indexed 

part of the query
 Break the set into buckets and read a bucket at a 

time (using H5Sselect_elements)

 Read the elements from disk and apply the residual 
query

 Return the rows that satisfy the query condition



  

Current approach

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

Residual expression

Final 
results

Index 
part of 

the query

H5Sselect_elements



  

Problems with the Current 
Approach

 Potential chunk revisiting (and very difficult to 
find the chunk in HDF5 cache because of 
capacity problems)

 Even if the chunk is found in HDF5 cache, it still 
has to be decompressed again

 Non-ordered access to chunks, resulting in 
longer disk access times



  

A Message from the Fifth 
Century, BC

“In general, commanding a large number is like 
commanding a few. It is a question of dividing up 
the numbers. Fighting with a large number is like 
fighting with a few. It is a question of configuration 

and designation.”

Sun Tzu – The Art of War

Section 5 (Strategic Military Power) verse 1



  

Solution: A Chunk Map

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

Chunkmap ...
Memory

DiskH5Sselect_hyperslab

Complete query expression

Final 
results Memory

Index 
part of 

the query



  

Chunkmap Performance



  

Chunkmap: Pros & Cons

 Pros
 The interesting chunks are visited only once
 Chunks are accessed in a strict sequential order, 

minimizing the amount of trips of disk heads
 The chunkmap on disk has much lower entropy 

than the original indices: much better compression

 Cons
 It requires memory: 1 byte per chunk.  It can be up 

to 1 bit per chunk (packed chunkmap)
 It requires more CPU, as the incoming data from 

disk has to be filtered through the query condition



  

How Much Memory is Required 
by a Chunkmap?

 Let's imagine a table with 1 billion of rows and 
1000 bytes/row.  That's around 1 TB in size.

 Size of the chunkmap, depending on the 
chunksize:
 32 KB CS: 32 MB (4 MB packed)
 64 KB CS: 16 MB (2 MB packed)
 128 KB CS: 8 MB (1 MB packed)
 256 KB CS: 4 MB (0.5 MB packed)



  

Optimal Chunksize?

 What is the optimal chunksize for reducing the 
chunkmap to a minimum without penalizing  
retrieval times too much?

 We have to choose a size that takes a relatively 
short time to read compared with disk access 
times (the main bottleneck in sparse reads)

 What is the mean latency when doing sparse 
reads?



  

Typical Disk Access Times

Average rotational latency: 4.1 ms
Seek times: from 2 ms to 18 msTimes for 7200 rpm drives



  

Typical Disk Access Times

 For general random sparse access data on 
disk, these figures usually give 12 ~ 15 ms

 However, for sequentially ordered sparse 
access of chunks that are close to each other, 
the typical times are bound by the rotational 
latency or less, i.e. <= 4.1 ms access times.



  

Optimal Chunksize (revisited)

 The optimal chunksize for reducing the amount 
of memory allocated to the chunkmap has to be 
chosen so that reads would constitute a 
relatively small fraction of the average rotational 
latency of a disk

 The most significant cost in time to process the 
chunk is the sum of:
 The time to physically read it from disk
 The time to uncompress it
 The time to apply the query condition to it



  

Times to Process a Chunk

 This depends on many factors.  For an 
example, we will choose:
 Chunk size: 128 KB
 Compression on (225% of reduction)
 Modern 7200 rpm SATA disk drive 
 Modern CPU (Intel Core2 or AMD Opteron)
 Query Filter: 

 (lower<=col4) & (col4<=upper) & 
(sqrt(col1+3.1*col2+col3*col4) > 3)



  

Times to Process a Chunk
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Times for Different Chunksizes

 Times and overhead for low selectivity:
 32 KB: 0.45 ms, 11% overhead
 64 KB: 0.90 ms, 22% overhead
 128 KB: 1.8 ms, 44% overhead
 256 KB: 3.6 ms, 88% overhead

 32 KB or 64 KB would be a good choice for 
increased low selectivity retrieval speed

 128 KB would strike a good balance between 
overhead (44%) and the memory used by the 
chunkmap (8 MB, or 1 MB packed) 



  

Times for Different Chunksizes



  

Some Considerations

 The query conditions are evaluated very 
efficiently thanks to the NumExpr computing 
kernel integrated into PyTables

 Compression reduces the total I/O time.  Not 
new, but interesting anyway

 The use of LZO2 compressor can be very 
effective in this scenario (as compared to ZLIB)

 Shuffle takes longer than LZO2, but is worth the 
while:  compression is much higher



  

A Few Words About NumExpr

 Fast evaluation of array expressions element-
wise by using a vector-based virtual machine

 It works by splitting up the operand arrays in 
chunks that fit into the cache of CPUs, allowing 
the CPU to attain very high-performance while 
performing the operations

 We have added support for boolean and string 
types, heterogeneous arrays (compound 
types), and optimized the amount of memory 
copies of unaligned arrays



  

Using MultiCore CPUs

 Nowadays, it is possible to use multicore CPUs 
and concurrent programming with threads to 
further accelerate the reading process in low 
selectivity environments



  

MultiCore & Threaded Disk 
Access

The I/O buffer is empty
Gather more data

The I/O buffer is full
Deliver elements to Python space

Read

Uncompress

Select

Read

Uncompress

Select

Thread 1
Core 1

Thread 2
Core 2

- The computations overlap
with I/O

- The only bottleneck is
disk speed

- Up to 1.3x speed-up



  

Multicore & RAID

 With the advent of multicore CPUs, having a 2, 
4 or 8-core system is not uncommon in current 
workstations

 In addition, drastic reductions in the cost of a 
medium-sized disk (500 GB costs about $120), 
makes it possible to build cheap but fast RAID 
systems reaching multi-TB of capacity

 This system configuration should be considered 
the norm right now!



  

Multicore & RAID
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The different cores can 
keep pace with the high 
read performance 
delivered by the RAID



  

Using Several Indexes in Queries

 Perhaps the most appealing use of chunkmaps 
is that they can utilize several indexes on a 
single query

 Examples:
 '(pressure < 20) & (temperature > 50)'

current OPSI is not able to use the indexes 
simultaneously

 '(pressure < 20) | (temperature > 50)'
current OPSI can't use any index (because the 
conditions are 'ORed')



  

Using Several Indexes in Queries

 '(pressure < 20) | (temperature > 50)'

Pressure ChunkmapPressure Chunkmap Temperature Chunkmap

Logical OR

Chunk 1 ...Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

H5Sselect_hyperslab

Combined Chunkmap ...



  

Using Several Indexes in Queries

 NumExpr will be used to combine any amount 
of logical combinations among chunkmaps

 Challenge: From a potentially complex query 
expression such as:
((pressure < 20) & (temperature > 50) |
 ((lati < 20) & (lati >=40) & (longi < 30))

find the maximum number of usable indexes
 This can represent a fair amount of work for 

very complex expressions!
 Start with the simplest ones and refine the 

query optimization as needed (not new)



  

Medium/Long Term Goals

 Try reducing the precision of values of the 
indexes
 Faster convergence during index creation
 Less entropy: better compression, less disk space
 Inexact results in queries

 Column-wise tables
 Current table datasets in PyTables are row-wise
 They are perfect for dealing with tables with a 

small/medium number of fields
 Column-wise may prove to be more efficient in 

scenarios where a large number of fields is required



  

Final Thoughts

 Chunkmaps seem like a good idea for OPSI
 They perform much better when the selectivity is 

low, while retaining the same efficiency for high 
selectivity queries

 They permit the use of several indexes in complex 
queries without too much effort (not taking into 
consideration the battle to optimize queries!)

 Precision reduction seems easy to implement
 Column-wise tables can be very interesting in 

some scenarios, but implementation could be 
difficult


