

An Overview of Future
Improvements to OPSI

Francesc Altet

Cárabos Coop. V.

Urbana-Champaign 10/08/07

Features of
 PyTables Pro

 OPSI (Optimized Partially Sorted Indexes)
 Indexing engine optimized for HDF5 features

(chunking, compression, data types)

 Improved LRU node cache performance (up to
20x faster than PyTables Standard)

 Focus on stability (meant for use in production
environments)

 All-in-one installers for Windows and Mac OS X

OPSI Features

 Based on well-tested PSI engine (PyTables 1.x)
 Improvements over PSI

 Better query times
 Selectable index quality
 Complex queries

 Current limitations
 Only one index can be used in a complex

expression
 Only supports compound types, not atomic types

Plans for the Near Future

 Optimize the retrieval of results in queries with
a large number of hits (low selectivity).
 The current algorithm is quite efficient for medium

or high selectivity, but less so for low selectivity

 Ability to use several indexes in complex
queries
 If col1 and col2 are indexed, then the expression
(col1 < 3.1) & (col2 > 2.3)cannot be
computed using both indexes (the first one will be
used instead)

Low Selectivity Retrieval

 A table with 4 columns:
 class Record(tables.IsDescription):
 col1 = tables.Int32Col()
 col2 = tables.Int32Col()
 col3 = tables.Float64Col()
 col4 = tables.Float64Col()

 1 billion rows (1 Gigarow)
 AMD Opteron @ 2 GHz
 SATA disk @ 7200 rpm
 Query:
(lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3)

Low Selectivity Retrieval

Low Selectivity Retrieval

 Current approach:
 Get the set of coordinates satisfying the indexed

part of the query
 Break the set into buckets and read a bucket at a

time (using H5Sselect_elements)

 Read the elements from disk and apply the residual
query

 Return the rows that satisfy the query condition

Current approach

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

Residual expression

Final
results

Index
part of

the query

H5Sselect_elements

Problems with the Current
Approach

 Potential chunk revisiting (and very difficult to
find the chunk in HDF5 cache because of
capacity problems)

 Even if the chunk is found in HDF5 cache, it still
has to be decompressed again

 Non-ordered access to chunks, resulting in
longer disk access times

A Message from the Fifth
Century, BC

“In general, commanding a large number is like
commanding a few. It is a question of dividing up
the numbers. Fighting with a large number is like
fighting with a few. It is a question of configuration

and designation.”

Sun Tzu – The Art of War

Section 5 (Strategic Military Power) verse 1

Solution: A Chunk Map

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

Chunkmap ...
Memory

DiskH5Sselect_hyperslab

Complete query expression

Final
results Memory

Index
part of

the query

Chunkmap Performance

Chunkmap: Pros & Cons

 Pros
 The interesting chunks are visited only once
 Chunks are accessed in a strict sequential order,

minimizing the amount of trips of disk heads
 The chunkmap on disk has much lower entropy

than the original indices: much better compression

 Cons
 It requires memory: 1 byte per chunk. It can be up

to 1 bit per chunk (packed chunkmap)
 It requires more CPU, as the incoming data from

disk has to be filtered through the query condition

How Much Memory is Required
by a Chunkmap?

 Let's imagine a table with 1 billion of rows and
1000 bytes/row. That's around 1 TB in size.

 Size of the chunkmap, depending on the
chunksize:
 32 KB CS: 32 MB (4 MB packed)
 64 KB CS: 16 MB (2 MB packed)
 128 KB CS: 8 MB (1 MB packed)
 256 KB CS: 4 MB (0.5 MB packed)

Optimal Chunksize?

 What is the optimal chunksize for reducing the
chunkmap to a minimum without penalizing
retrieval times too much?

 We have to choose a size that takes a relatively
short time to read compared with disk access
times (the main bottleneck in sparse reads)

 What is the mean latency when doing sparse
reads?

Typical Disk Access Times

Average rotational latency: 4.1 ms
Seek times: from 2 ms to 18 msTimes for 7200 rpm drives

Typical Disk Access Times

 For general random sparse access data on
disk, these figures usually give 12 ~ 15 ms

 However, for sequentially ordered sparse
access of chunks that are close to each other,
the typical times are bound by the rotational
latency or less, i.e. <= 4.1 ms access times.

Optimal Chunksize (revisited)

 The optimal chunksize for reducing the amount
of memory allocated to the chunkmap has to be
chosen so that reads would constitute a
relatively small fraction of the average rotational
latency of a disk

 The most significant cost in time to process the
chunk is the sum of:
 The time to physically read it from disk
 The time to uncompress it
 The time to apply the query condition to it

Times to Process a Chunk

 This depends on many factors. For an
example, we will choose:
 Chunk size: 128 KB
 Compression on (225% of reduction)
 Modern 7200 rpm SATA disk drive
 Modern CPU (Intel Core2 or AMD Opteron)
 Query Filter:

 (lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3)

Times to Process a Chunk

I/O ZLIB Query Filter Shuffle LZO2
0

100

200

300

400

500

600

700

800

Times (μs) for a 128 KB chunk (57 KB compressed)

Using ZLIB: 1.8 ms Using LZO2: 1.3 ms

Times for Different Chunksizes

 Times and overhead for low selectivity:
 32 KB: 0.45 ms, 11% overhead
 64 KB: 0.90 ms, 22% overhead
 128 KB: 1.8 ms, 44% overhead
 256 KB: 3.6 ms, 88% overhead

 32 KB or 64 KB would be a good choice for
increased low selectivity retrieval speed

 128 KB would strike a good balance between
overhead (44%) and the memory used by the
chunkmap (8 MB, or 1 MB packed)

Times for Different Chunksizes

Some Considerations

 The query conditions are evaluated very
efficiently thanks to the NumExpr computing
kernel integrated into PyTables

 Compression reduces the total I/O time. Not
new, but interesting anyway

 The use of LZO2 compressor can be very
effective in this scenario (as compared to ZLIB)

 Shuffle takes longer than LZO2, but is worth the
while: compression is much higher

A Few Words About NumExpr

 Fast evaluation of array expressions element-
wise by using a vector-based virtual machine

 It works by splitting up the operand arrays in
chunks that fit into the cache of CPUs, allowing
the CPU to attain very high-performance while
performing the operations

 We have added support for boolean and string
types, heterogeneous arrays (compound
types), and optimized the amount of memory
copies of unaligned arrays

Using MultiCore CPUs

 Nowadays, it is possible to use multicore CPUs
and concurrent programming with threads to
further accelerate the reading process in low
selectivity environments

MultiCore & Threaded Disk
Access

The I/O buffer is empty
Gather more data

The I/O buffer is full
Deliver elements to Python space

Read

Uncompress

Select

Read

Uncompress

Select

Thread 1
Core 1

Thread 2
Core 2

- The computations overlap
with I/O

- The only bottleneck is
disk speed

- Up to 1.3x speed-up

Multicore & RAID

 With the advent of multicore CPUs, having a 2,
4 or 8-core system is not uncommon in current
workstations

 In addition, drastic reductions in the cost of a
medium-sized disk (500 GB costs about $120),
makes it possible to build cheap but fast RAID
systems reaching multi-TB of capacity

 This system configuration should be considered
the norm right now!

Multicore & RAID

Read

Uncompress

Select

Thread 1
Core 1

Read

Uncompress

Select

Thread 2
Core 2

Read

Uncompress

Select

Thread 3
Core 3

Read

Uncompress

Select

Thread 4
Core 4

Empty I/O buffer

Full I/O buffer

The different cores can
keep pace with the high
read performance
delivered by the RAID

Using Several Indexes in Queries

 Perhaps the most appealing use of chunkmaps
is that they can utilize several indexes on a
single query

 Examples:
 '(pressure < 20) & (temperature > 50)'

current OPSI is not able to use the indexes
simultaneously

 '(pressure < 20) | (temperature > 50)'
current OPSI can't use any index (because the
conditions are 'ORed')

Using Several Indexes in Queries

 '(pressure < 20) | (temperature > 50)'

Pressure ChunkmapPressure Chunkmap Temperature Chunkmap

Logical OR

Chunk 1 ...Chunk 2 Chunk 3 Chunk N-1 Chunk NChunk 4

H5Sselect_hyperslab

Combined Chunkmap ...

Using Several Indexes in Queries

 NumExpr will be used to combine any amount
of logical combinations among chunkmaps

 Challenge: From a potentially complex query
expression such as:
((pressure < 20) & (temperature > 50) |
 ((lati < 20) & (lati >=40) & (longi < 30))

find the maximum number of usable indexes
 This can represent a fair amount of work for

very complex expressions!
 Start with the simplest ones and refine the

query optimization as needed (not new)

Medium/Long Term Goals

 Try reducing the precision of values of the
indexes
 Faster convergence during index creation
 Less entropy: better compression, less disk space
 Inexact results in queries

 Column-wise tables
 Current table datasets in PyTables are row-wise
 They are perfect for dealing with tables with a

small/medium number of fields
 Column-wise may prove to be more efficient in

scenarios where a large number of fields is required

Final Thoughts

 Chunkmaps seem like a good idea for OPSI
 They perform much better when the selectivity is

low, while retaining the same efficiency for high
selectivity queries

 They permit the use of several indexes in complex
queries without too much effort (not taking into
consideration the battle to optimize queries!)

 Precision reduction seems easy to implement
 Column-wise tables can be very interesting in

some scenarios, but implementation could be
difficult

